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Résumé
La logique V est la logique de contre-factuels la

plus générale dans la famille des systèmes de Lewis.
Elle est caractérisée par la classe de modèles à sphère.
Dans cet article, nous proposons un nouveau calcul des
séquents pour cette logique. Notre calcul est formulé
en utilisant le connecteur de plausibilité comparative �
introduit par Lewis : une formule A � B signifie intuiti-
vement que A est au moins aussi plausible que B, de
sorte qu’un conditionnel A⇒ B peut être défini comme
A est impossible ou A∧¬B est moins plausible que A.
Différemment des tentatives précédents, notre calcul
est � standard � dans le sens que chaque connecteur
est traité par un nombre fini de règles avec un nombre
fixe et limité des prémisses. De plus, notre calcul est
“interne”, dans le sens que chaque séquent peut être
directement traduit dans une formule du langage.. La
caracteristique de notre calcul est que les séquents
contiennent un type particulier de structures, appelées
blocks, qui représentent ou codent une combinaison
finie de formules avec �. Nous montrons que le calcul
est terminant, en conséquence il fournit une procédure
de décision pour la logique V.

Abstract
The logic V is the basic logic of counterfactuals in

the family of Lewis’ systems. It is characterized by the
whole class of so-called sphere models. We propose a
new sequent calculus for this logic. Our calculus takes
as primitive Lewis’ connective of comparative plausibi-
lity � : a formula A � B intuitively means that A is at
least as plausible as B, so that a conditional A ⇒ B
can be defined as A is impossible or A ∧ ¬B is less
plausible than A. As a difference with previous attempts,

our calculus is standard in the sense that each connec-
tive is handled by a finite number of rules with a fixed
and finite number of premises. Moreover our calculus
is “internal”, in the sense that each sequent can be
directly translated into a formula of the language. The
peculiarity of our calculus is that sequents contain a
special kind of structures, called blocks, which encode
a finite combination of �. We show that the calculus is
terminating, whence it provides a decision procedure
for the logic V.

1 Introduction

In the recent history of conditional logics the work
by Lewis [16] has a prominent place (among others
[5, 18, 13, 11]), he proposed a formalization of conditional
logics in order to represent a kind of hypothetical reasoning
(if A were the case then B), that cannot be captured by clas-
sical logic with material implication. More precisely, the
original motivation by Lewis was to formalize counterfac-
tual sentences, i.e. conditionals of the form “if A were the
case then B would be the case”, where A is false. But inde-
pendently from counterfactual reasoning, conditional logics
have found then an interest also in several fields of artificial
intelligence and knowledge representation. Just to mention
a few : they have been used to reason about prototypical
properties [8] and to model belief change [11, 9]. Moreover,
conditional logics can provide an axiomatic foundation of
nonmonotonic reasoning [4, 12], here a conditional A⇒ B
is read as “in normal circumstances if A then B”. Finally, a
kind of (multi)-conditional logics [2, 3] have been used to
formalize epistemic change in a multi-agent setting and in



some kind of epistemic “games”, each conditional operator
expresses the “conditional beliefs” of an agent.

In this paper we concentrate on the logic V of counterfac-
tual reasoning studied by Lewis. This logic is characterized
by possible world models structured by a system of spheres.
Intuitively, each world is equipped with a set of nested sets
of worlds : inner sets represent “most plausible worlds” from
the point of view of the given world and worlds belonging
only to outer sets represent less plausible worlds. In other
words, each sphere represent a degree of plausibility. The
(rough) intuition involving the truth condition of a counter-
factual A ⇒ B at a world x is that B is true at the most
plausible worlds where A is true, whenever there are worlds
satisfying A. But Lewis is reluctant to assume that most
plausible worlds A exist (whenever there are A-worlds), for
philosophical reasons. He calls this assumption the Limit
Assumption and he formulates his semantics in more gene-
ral terms which do need this assumption (see below). The
sphere semantics is the strongest semantics for conditional
logics, in the sense that it characterizes only a subset of rela-
tively strong systems ; there are weaker (and more abstract)
semantics such as the selection function semantics which
characterize a wider range of systems [18].

From the point of view of proof-theory and automated de-
duction, conditional logics do not have a state of the art com-
parable with, say, the one of modal logics, where there are
well-established alternative calculi, whose proof-theoretical
and computational properties are well-understood. This is
partially due to the mentioned lack of a unifying semantics.
Similarly to modal logics and other extensions/alternative
to classical logics two types of calculi have been studied :
external calculi which make use of labels and relations on
them to import the semantics into the syntax, and internal
calculi which stay within the language, so that a “configura-
tion” (sequent, tableaux node...) can be directly interpreted
as a formula of the language. Limiting our account to Le-
wis’ counterfactual logics, some external calculi have been
proposed in [10] which presents modular labeled calculi
for preferential logic PCL and its extensions, this family
includes all counterfactual logics by Lewis. Internal cal-
culi have been proposed by Gent [7] and by de Swart [6]
for Lewis’ logic VC and neighbours. These calculi mani-
pulate sets of formulas and provide a decision procedure,
although they comprise an infinite set of rules and rules
with a variable number of premises. Finally in [15] the au-
thors provide internal calculi for Lewis’ conditional logic
V and some extensions. Their calculi are formulated for a
language comprising the comparative plausibility connec-
tive, the strong and the weak conditional operator. Both
conditional operators can be defined in terms of the compa-
rative similarity connective. These calculi are actually an
extension of Gent’s and de Swart’s ones and they comprise
an infinite set of rules with a variable number of premises.
We mention also a seminal work by Lamarre [13] who pro-

posed a tableaux calculus for Lewis’ logic, but it is actually
a model building procedure rather than a calculus made of
deductive rules.

In this paper we tackle the problem of providing a stan-
dard proof-theory for Lewis’ logic V in the form of internal
calculi. By “standard” we mean that we aim to obtain ana-
lytic sequent calculi where each connective is handled by
a finite number of rules with a fixed and finite number of
premises. As a preliminary result, we propose a new internal
calculus for Lewis’ logic V. This is the most general logic
of Lewis’ family and it is complete with respect the whole
class of sphere models (moreover, its unnested fragment
essentially coincide with KLM rational logic R [14]). Our
calculus takes as primitive Lewis’ comparative plausibility
connective � : a formula A � B means, intuitively, that A
is at least as plausible as B, so that a conditional A ⇒ B
can be defined as A is impossible or A ∧ ¬B is less plau-
sible than A 1. As a difference with previous attempts, our
calculus comprises structured sequents containing blocks,
where a block is a new syntactic structure encoding a finite
combination of �. In other words, we introduce a new mo-
dal operator (but still definable in the logic) which encodes
finite combinations of �. This is the main ingredient to
obtain a standard and internal calculus for V. We show that
the calculus is terminating whence it provides a decision
procedure. In further research we shall study its complexity
and we shall study how to extend it to stronger logics of
Lewis’ family.

2 Lewis’ logic V

We consider a propositional language L generated from a
set of propositional variables and boolean connectives plus
two special connectives� (comparative plausibility) and⇒
(conditional). A formula A � B is read as “A is at least as
plausible as B”. The semantics is defined in terms of sphere
models, we take the definition by Lewis without the limit
assumption.

Definition 1 A model M has the form 〈W, $, []〉, where
W is a non-empty set whose elements are called worlds,
[ ] : V arprop −→ Pow(W ) is the propositional evalua-
tion, and $ : W −→ Pow(Pow(W )). We write $x for
the value of the function $ for x ∈ W , and we denote
the elements of $x by α, β.... Models have the following
property :

∀α, β ∈ $x α ⊆ β ∨ β ⊆ α

The truth definition is the usual one for boolean cases,
for the additional connectives we have :

1. This definition avoids the Limit Assumption, in the sense that it
works also for models where at least a sphere containing A worlds does
not necessarily exist.



— x ∈ [A � B] iff ∀α ∈ $x if α ∩ [B] 6= ∅ then
α ∩ [A] 6= ∅

— x ∈ [A⇒ B] iff either ∀α ∈ $x α∩ [A] = ∅ or there
is α ∈ $x, such that α∩ [A] 6= ∅ and α∩ [A∧¬B] =
∅.

The semantic notions, satisfiability and validity are defined
as usual.

For the ease of reading we introduce the following
conventions and abbreviations : we write x |= A, where the
model is understood instead of x ∈ [A]. Moreover given
α ∈ $x, we use the following notations :

α |=∀ A if α ⊆ [A], i.e. ∀y ∈ α y |= A
α |=∃ A if α ∩ [A] 6= ∅, i.e. ∃y ∈ α such that
y |= A

Observe that with this notation, the truths conditions for
� and⇒ become :

— x |= A � B iff ∀α ∈ $x either α |=∀ ¬B or α |=∃ A
— x |= A⇒ B iff ∀α ∈ $x either α |=∀ ¬A or there is

β ∈ $x, such that β |=∃ A and β |=∀ A→ B.
It can be observed that the two connectives � and⇒ are

interdefinable, in particular :

A⇒ B ≡ (⊥ � A) ∨ ¬(A ∧ ¬B � A)

Also the � connective can be defined in terms of the
conditional⇒ as follows :

A � B ≡ (A ∨B)⇒ ⊥∨ ¬((A ∨B)⇒ ¬A)

A formula of the form ⊥ � ¬A means �A.
The logic V can be axiomatized taking as primitive the

conditional operator⇒ which gives the axiomatization here
below [16] :

— classical axioms and rules
— if A↔ B then (C ⇒ A)↔ (C ⇒ B) (RCEC)
— if A→ B then (C ⇒ A)→ (C ⇒ B) (RCK)
— ((A⇒ B) ∧ (A⇒ C))→ (A⇒ B ∧ C) (AND)
— A⇒ A (ID)
— ((A⇒ B) ∧ (A⇒ C))→ (A ∧B ⇒ C) (CM)
— (A ∧B ⇒ C)→ ((A⇒ B)→ (A⇒ C)) (RT) 2

— ((A⇒ B)∧¬(A⇒ ¬C))→ ((A∧C)⇒ B) (CV)
— ((A⇒ C) ∧ (B ⇒ C))→ (A ∨B ⇒ C) (OR)

together with the definition of � in terms of⇒ given above.
From the axiomatization above, it can be shown that the
flat fragment (i.e. without nested conditionals) of V corres-
ponds to rational logic R introduced by Kraus, Lehmann
and Magidor in [12].

On the other hand, we can axiomatize V taking as primi-
tive the connective � and the axioms are the following :

2. It is worth noticing that (CM) + (RT) are equivalent (in CK+ID) to
the axiom known as (CSO) :

((A⇒ B)∧ (B ⇒ A))→ ((A⇒ C)↔ (B ⇒ C)) (CSO)

— classical axioms and rules
— ifB → (A1∨. . .∨An) then (A1 � B)∨. . .∨(An �

B)
— (A � B) ∨ (B � A)
— (A � B) ∧ (B � C)→ (A � C)
— A⇒ B ≡ (⊥ � A) ∨ ¬(A ∧ ¬B � A)

The family of Lewis’ systems contains stronger logics satis-
fying additional axioms like centering, strong centering, uni-
formity [16], corresponding to further properties of sphere
systems.

3 An internal sequent calculus for V

In this section we present IV, a structured calculus for
Lewis’ conditional logic V introduced in the previous sec-
tion. In addition to ordinary formulas, sequents contains
also blocks of the form :

[A1, . . . , Am / B1, . . . , Bn]

where each Ai, Bj are formulas. The interpretation is the
following :

x |= [A1, . . . , Am / B1, . . . , Bn]

iff ∀α ∈ $x :
— either α |=∀ ¬Bj for some j, or
— α |=∃ Ai for some i.

Observe that

[A1, . . . , Am / B1, . . . , Bn] ↔
m∨
i

n∨
j

(Ai � Bj)

Therefore a block represents n×m disjunction of � formu-
las.

We shall abbreviate multisets of formulas in blocks by Σ,
Π, so that we shall write (since the order is irrelevant) :
[Σ /Π], [Σ, A /Π], [Σ /Π, B] and so on.

A sequent Γ is a multiset G1, . . . Gk, where each Gi is
either a formula or a block. A sequent Γ = G1, . . . Gk, is
valid if for every modelM = 〈W, $, []〉, for every world
x ∈W , it holds that x |= G1 ∨ . . . ∨Gk. The calculus IV

comprises the following axiom and rules :
— Standard Axioms :

(i) Γ,> (ii) Γ,¬⊥ (iii) Γ, P,¬P

— Standard external rules of sequent calculi for boolean connectives
— (�+)

Γ, [A / B]
(�+)

Γ, A � B

— (�-)

Γ,¬(A � B), [B,Σ / Π] Γ,¬(A � B), [Σ / Π, A]
(�−)

Γ,¬(A � B), [Σ / Π]

— (⇒+)
Γ, [⊥ / A],¬(A ∧ ¬B � A)

(⇒+)
Γ, A⇒ B



— (⇒-)
Γ,¬(⊥ � A) Γ, [A ∧ ¬B / A]

(⇒−)
Γ,¬(A⇒ B)

— (Communication)

Γ, [Σ1 / Π1,Π2], [Σ1,Σ2 / Π2] Γ, [Σ2 / Π1,Π2], [Σ1,Σ2 / Π1]
(Com)

Γ, [Σ1 / Π1], [Σ2 / Π2]

— (Jump)
¬Bi,Σ

(Jump)
Γ, [Σ / B1, . . . , Bn]

Some remark on the rules : the rule (�+) just introduces
the block structure, showing that / is a generalization of � ;
(�-) prescribes case analisys and contribute to expand the
blocks ; the rules (⇒+) and (⇒-) just apply the definition
of⇒ in terms of �. The (Communication) rule is directly
motivated by the nesting of spheres, which means a linear
order on sphere inclusion ; this rule is very similar to the
homonymous one used in hypersequent calculi for handling
truth in linearly ordered structures [1, 17].
As usual, given a formula G ∈ L, in order to check whether
G is valid we look for a derivation of G in the calculus IV.
Given a sequent Γ, we say that Γ is derivable in IV if it
admits a derivation. A derivation of Γ is a tree where :

— the root is Γ ;
— a leaf is an instance of standard axioms ;
— a non-leaf node is (an instance of) the conclusion of

a rule having (an instance of) the premises of the rule
as parents.

Here below we show a few examples of derivations.

Example 2 A derivation of (A � B) ∨ (B � A)

¬A,A
(Jump)

[A / B,A], [A,B / A]

¬B,B
(Jump)

[B / B,A], [A,B / B]
(Com)

[A / B], [B / A]
(�+)

[A / B], B � A
(�+)

A � B,B � A
(∨+)

(A � B) ∨ (B � A)

We terminate this section by proving the soundness of the
calculus and by stating some standard structural properties
of the calculus.

Theorem 4 (Soundness) Given a sequent Γ, if Γ is deri-
vable then it is valid.

Proof: by induction on the height of derivation. The basic
case corresponds to proofs where Γ is an instance of stan-
dard axioms, is easy and left to the reader. For the inductive
step, we have to consider all the rules ending a derivation.
We only show the most interesting cases of the derivation
ended by an application of (�−) and (Com) as follows :

— (�−)

(i) Γ′,¬(A � B), [B,Σ / Π] (ii) Γ′,¬(A � B), [Σ / Π, A]
(�−)

Γ′,¬(A � B), [Σ / Π]

By inductive hypothesis, (i) and (ii) are valid sequents.
By absurd, suppose that the conclusion is not, that is
to say there is a modelM = 〈W, $, []〉 and a world
x ∈ W such that (1) x 6|= Gi, for all Gi ∈ Γ′, (2)
x 6|= ¬(A � B) and (3) x 6|= [Σ / Π]. From (1),
(2) and the fact that (i) is valid, we conclude that
(a) x |= [B,Σ / Π]. Reasoning in the same way,
from (1), (2) and the validity of (ii), we conclude
that (b) x |= [Σ / Π, A]. By the interpretation of a
block, for all α ∈ $x, from (a) we have that either
α |=∀ ¬Bj for some Bj ∈ Π or α |=∃ Ai for some
Ai ∈ Σ or (∗) α |=∃ B. Similarly, from (b) we have
that eitherα |=∀ ¬Bj for someBj ∈ Π or (∗∗)α |=∀
¬A or α |=∃ Ai for some Ai ∈ Σ. If α |=∀ ¬Bj for
some Bj ∈ Π, then, by the interpretation of a block,
we have that x |= [Σ / Π], and this contradicts (3).
For the same reason, it cannot be also the case that
α |=∃ Ai for someAi ∈ Σ. The only case left is when
(∗) α |=∃ B and (∗∗) α |=∀ ¬A. This contradicts (2).
Indeed, (2) x 6|= ¬(A � B) means that x |= A � B,
namely, by the truth condition of �, for all α ∈ $x
we have that either α |=∀ ¬B, and this contradicts
(*), or α |=∃ A, and this contradicts (**) ;

— (Com)

(i) Γ′, [Σ1 /Π1,Π2], [Σ1,Σ2 /Π2]

(ii) Γ′, [Σ2 /Π1,Π2], [Σ1,Σ2 /Π1]
(Com)

Γ′, [Σ1 /Π1], [Σ2 /Π2]

By inductive hypothesis, (i) and (ii) are valid. Sup-
pose the conclusion Γ′, [Σ1 / Π1], [Σ2 / Π2] is not,
namely there is a modelM = 〈W, $, []〉 and a world
x ∈ W such that (1) x 6|= Gk for all Gk ∈ Γ′, (2)
x 6|= [Σ1 / Π1] and (3) x 6|= [Σ2 / Π2]. By the in-
terpretation of blocks, from (2) it follows that there
is α ∈ $x such that α 6|=∃ Ai, for all Ai ∈ Σ1, and
α 6|=∀ ¬Bj for all Bj ∈ Π1. Similarly, from (3) it
follows that there is β ∈ $x such that β 6|=∃ Ck, for
all Ck ∈ Σ2, and β 6|=∀ ¬Dl for all Dl ∈ Π2. By De-
finition 1, either α ⊆ β or β ⊆ α. If α ⊆ β, we have
also that β 6|=∃ Ai, for all Ai ∈ Σ1, and β 6|=∀ ¬Bj

for all Bj ∈ Π1. Let us consider (ii) : we have that
β 6|=∃ Ck, for all Ck ∈ Σ2, as well as β 6|=∀ ¬Bj for
all Bj ∈ Π1 and β 6|=∀ ¬Dl for all Dl ∈ Π2 : by the
definition of interpretation of a block, we have that
(4) x 6|= [Σ2 /Π1,Π2]. Furthermore, since β 6|=∃ Ai,
for all Ai ∈ Σ1, β ∈ $x such that β 6|=∃ Ck, for all
Ck ∈ Σ2 and β 6|=∀ ¬Bj for all Bj ∈ Π1, then we
have that (5) x 6|= [Σ1,Σ2 /Π1]. However, from (1),



Example 3 A derivation of an instance of Lewis’ axiom CV ((P ⇒ R) ∧ ¬(P ⇒ ¬Q))→ (P ∧Q⇒ R).

¬P, P,⊥
(Jump)

. . . , [P,⊥ / P ]

⊥,¬⊥
(Jump)

. . . , [⊥ / P,⊥]
(�−)

(P ∧Q)⇒ R,¬(⊥ � P ), [⊥ / P ],¬(P ∧ ¬¬Q � P )
(⇒+)

(P ∧Q)⇒ R,P ⇒ ¬Q,¬(⊥ � P )
∆

P ⇒ ¬Q, (P ∧Q)⇒ R, [P ∧ ¬R / P ]
(⇒−)

¬(P ⇒ R), P ⇒ ¬Q, (P ∧Q)⇒ R
(¬)

¬(P ⇒ R),¬¬(P ⇒ ¬Q), (P ∧Q)⇒ R
(∧−)

¬((P ⇒ R) ∧ ¬(P ⇒ ¬Q)), (P ∧Q)⇒ R
(→+)

((P ⇒ R) ∧ ¬(P ⇒ ¬Q))→ ((P ∧Q)⇒ R)

where ∆ is the following derivation :

P, P ∧ ¬R,¬P
(Jump)

. . . , [P, P ∧ ¬R / P ]

¬P,¬Q,P, P ∧ ¬R ¬P,¬Q,Q, P ∧ ¬R
(∧+)

¬P,¬Q,P ∧Q,P ∧ ¬R
(¬)

¬P,¬¬(¬Q), P ∧Q,P ∧ ¬R
(∧−)

¬(P ∧ ¬¬Q), P ∧Q,P ∧ ¬R
(Jump)

. . . , [P ∧Q,P ∧ ¬R / P, P ∧ ¬¬Q]

P,¬P,¬Q,R ¬R,¬P,¬Q,R
(∧+)

P ∧ ¬R,¬P,¬Q,R
(∧−)

P ∧ ¬R,¬(P ∧Q), R
(¬)

P ∧ ¬R,¬(P ∧Q),¬¬R
(∧−)

P ∧ ¬R,¬(P ∧Q ∧ ¬R)
(Jump)

. . . , [P ∧ ¬R / P, P ∧ ¬¬Q,P ∧Q ∧ ¬R]
(�−)

[⊥ / P ], [⊥ / P ∧Q], [P ∧ ¬R / P, P ∧ ¬¬Q],¬(P ∧Q ∧ ¬R � P ∧Q),¬(P ∧ ¬¬Q � P )
(�−)

[⊥ / P ], [P ∧ ¬R / P ], [⊥ / P ∧Q],¬(P ∧Q ∧ ¬R � P ∧Q),¬(P ∧ ¬¬Q � P )
(⇒+)

[⊥ / P ],¬(P ∧ ¬¬Q � P ), (P ∧Q)⇒ R, [P ∧ ¬R / P ]
(⇒+)

P ⇒ ¬Q, (P ∧Q)⇒ R, [P ∧ ¬R / P ]

(4) and (5) we obtain that (ii) is not valid, against the
inductive hypothesis ; If β ⊆ α, the proof is symme-
tric and left to the reader.

�

Proposition 5 (Weakening) Weakening is height-
preserving admissible in the following cases :

— if Γ is derivable, then Γ, F is derivable where F is a
formula or a block.

— if Γ, [Σ / Π] is derivable, so are Γ, [Σ, A / Π] and
Γ, [Σ /Π, B]

Proposition 6 (Contraction) Contraction is height-
preserving admissible in the following cases :

— if Γ, [A,A,Σ / Π] is derivable then Γ, [A,Σ / Π] is
derivable too.

— if Γ, [Σ / Π, B,B] is derivable then Γ, [Σ / Π, B] is
derivable too.

— if Γ, F, F is derivable then Γ, F is derivable too,
where F is either a formula or a block.

Proposition 7 (Invertibility) All rules, except (Jump),
are height-preserving invertible : if the conclusion is deri-
vable then the premises must be derivable with a derivation
of no-greater height.

4 Termination and Completeness

In this section we prove both the termination and the
completeness of the calculus. Both results make use of the
notion of saturated sequent : intuitively any sequent that
is obtained by backwards applying the rules “as much as
possible”. To get termination we show that any derivation
without redundant application of the rules is finite and its
leaves are axioms or saturated sequents. Completeness is
proved by induction on the modal degree of a sequent (de-
fined next), by taking advantage of the fact that backward
application of the rules does not increase the modal degree
of sequent and eventually reduced it (the Jump rule).

Definition 8 The modal degree md of a formula/sequent is
defined as follows :

md(P ) = 0
md(A ∗ B) = max(md(A),md(B)), for ∗ bo-
lean connective
md(¬A) = md(A)
md(A � B) = md(A ⇒ B) =
max(md(A),md(B)) + 1
md(∆) = max{md(A) | A ∈ ∆} for a multiset



∆
md(Σ /Π) = max(md(Σ),md(Γ)) + 1

Definition 9 A sequent Γ is saturated if it has the form

ΓN ,Λ, [Σ1 /Π1], . . . , [Σn /Πn]

where ΓN ,Λ are possible empty and n ≥ 0 and :

1. ΓN is a multi-set of negative �-formulas,

2. Λ is a multi-set of literals,

3. for every ¬(A � B) ∈ ΓN and every [Σi /Πi] either
B ∈ Σi or A ∈ Πi

4. for every [Σi /Πi] and [Σj /Πj ] : either Σi ⊆ Σj or
Σj ⊆ Σi and either Πi ⊆ Πj or Πj ⊆ Πi.

Proposition 10 All rules preserve the modal degree, i.e. the
premises of rules have a modal degree no-greater than the
one of the respective conclusion.

We want to prove now that the calculus terminates, pro-
vided we restrict attention to non-redundant derivations, a
notion that we define next. An application of a rule (R) :

Γ1 Γ2
(R)

Γ

is redundant if Γ can be obtained from Γi for i = 1 or
i = 2 by contraction or weakening. A derivation is non-
redundant if (a) it does not contain redundant applications
of the rules, (b) if a sequent is an axiom then it is a leaf
of the derivation. As a consequence of the admissibility of
contraction (Proposition 6) and of weakening (Proposition
5), if a sequent is derivable then it has a non-redundant
derivation. Thus we can safely restrict proof search to non-
redundant derivations.

The proposition below means that for any sequent Γ (de-
rivable or not in the calculus), there is a (non-redundant)
derivation tree whose leaves (no matter whether they are
derivable or not in the calculus) are saturated sequents with
no greater modal degree. In order to prove it, we introduce
some complexity measure of sequents. First we define a
complexity measure of formulas :

Cp(A) = 0 if A is either a literal or it has the
form ¬(C � D),
Cp(A) = 1 if A has one of the forms C �
D,C ⇒ D,¬(C ⇒ D)
Cp(¬¬A) = cp(A) + 1
Cp(A ∗B) = Cp(A) +Cp(B) + 1 where ∗ is a
boolean connective.

Next we let

CP (Γ) = multiset{Cp(A) | A ∈ Γ}

We further define :

CN(Γ) = Card({(¬(A � B), [Σ / Π]) |
¬(A � B), [Σ / Π] ∈ Γ, B 6∈ Σ, A 6∈ Π})

CC(Γ) = n ∗ (Card(ΣΓ) + Card(ΠΓ))−
n∑

i=1

(Card(Σi) + Card(Πi))

We finally define the rank of a sequent Γ, rank(Γ) as the
triple

rank(Γ) = 〈CP (Γ), CN(Γ), CC(Γ)〉

taken in lexicographic order, where we consider the multiset
ordering for CP (Γ). Observe that a minimal rank has the
form 〈0∗, 0,m〉, where m ≥ 0.

We are ready to prove the following proposition.

Proposition 11 Given a sequent Γ, every branch of any
derivation-tree starting with Γ eventually ends with a satu-
rated sequent with no greater modal degree than that of
Γ. Moreover the set of such saturated sequents for a given
derivation tree is finite.

Proof: by Proposition 10, no rule applied backward aug-
ments the modal degree of a sequent. It can be shown that
every (non-redundant) application of a rules (R) with pre-
mises Γi and conclusion Γ reduces the rank of Γ in the sense
that rank(Γi) < rank(Γ). In order to see this, we note :

— the application of classical propositional rule reduces
CP (Γ)

— the application of (�+), (⇒+), (⇒−) rules reduces
CP (Γ)

— the application of (�−) reduces CN(Γ), without in-
creasing CP (Γ)

— the application of (Com) reduces CC(Γ), without
increasing neitherCP (Γ), norCN(Γ). We first show
that an application of (Com) rule reduces CC(Γ).
Let Γ = ∆, [Σ1 / Π1], [Σ2 / Π2], . . . , [Σn / Πn]. To
simplify indexing (since the order does not matter)
suppose that the application of (Com) concerns the
blocks [Σ1 /Π1], [Σ2 /Π2], so that from the premises
of the application of (Com) leading to Γ will be :

Γ1 = ∆, [Σ1/Π1,Π2], [Σ1,Σ2/Π2], [Σ3/Π3], . . . , [Σn/Πn]

Γ2 = ∆, [Σ2/Π1,Π2], [Σ1,Σ2/Π1], [Σ3/Π3], . . . , [Σn/Πn]

Observe that the overall set of formulas in blocks
does not change so that, referring to the above
notation :

ΣΓi
= ΣΓ and ΠΓi

= ΠΓ, for i = 1, 2

Let us abbreviate a = n ∗ (Card(ΣΓ) +Card(ΠΓ))
and c =

∑n
i=3(Card(Σi) + Card(Πi)), so that we

have :

CC(Γ) = a−((Card(Σ1)+Card(Π1))+(Card(Σ2)+Card(Π2))+c)



CC(Γ1) = a− ((Card(Σ1) + Card(Π1 ∪Π2))+

+(Card(Σ1 ∪ Σ2) + Card(Π2)) + c)

CC(Γ2) = a− ((Card(Σ2) + Card(Π1 ∪Π2))+

+(Card(Σ1 ∪ Σ2) + Card(Π1)) + c)

Obviously CC(Γ1) ≤ CC(Γ) and CC(Γ2) ≤
CC(Γ), since Card(Σ1 ∪ Σ2) ≥ Card(Σi) and
Card(Π1 ∪ Π2) ≥ Card(Πi), i = 1, 2. But since
the application of (Com) is non-redundant, it res-
pects the restriction (RestCom) and therefore either
(a) Σ1 6⊆ Σ2 and Σ2 6⊆ Σ1 or (b) Π1 6⊆ Π2 and
Π2 6⊆ Π1. It is easy to see that some inequalities
must be strict by the (RestCom) restriction, so that in
both cases (a) and (b) we get CC(Γ1) < CC(Γ) and
CC(Γ2) < CC(Γ).

�

The following theorem shows that the calculus is ter-
minating, whence it provides a decision procedure for V,
assuming restriction to non-redundant derivations.

Proposition 12 Given a sequent Γ, any non-redundant
derivation-tree of Γ is finite.

Proof: by induction on the modal degree m of Γ. If m = 0
then we rely on the corresponding property of classical
sequent calculus. If m > 0, by the previous Proposition
11, Γ has a finite derivation tree ending with a set of satu-
rated sequents Γi. For each Γi either it is an axiom and Γi

will be a leaf of the derivation, or the only applicable rule
(by non-redundancy restriction) is (Jump), but the premise
of (Jump) has a smaller modal degree and we apply the
induction hypothesis to the premise of (Jump).

�

The following proposition is the last ingredient we need
for the completeness proof.

Proposition 13 (Semantic Invertibility) All rules, except
(Jump) are semantically invertible : if the conclusion is
valid then the premises are also valid.

Theorem 14 (Completeness of the calculus) If Γ is valid
then it is derivable

Proof: by induction on the modal degree of Γ. If md(Γ) =
0 then Γ is just a multiset of propositional formulas, and we
rely on the completeness of sequent calculus for classical
logic.

Suppose now that md(Γ) > 0, by Proposition 11, Γ can
be derived from a set of saturated sequents Γi of no greater
modal degree. But by previous Proposition 13 (semantic
invertibility) since Γ is valid then also each Γi is valid. We

are left to prove that any saturated and valid sequent Γi is
derivable.

To this purpose we prove that if Γi is valid then either (i)
it is an axiom or (ii) there must exist a valid sequent ∆ such
that Γi is obtained by (Jump) from ∆. In the first case (i)
the result is obvious. In case (ii) we reason as follows : since
md(∆) < md(Γi) by induction hypothesis ∆ is derivable
in the calculus, and so is Γi indeed by the (Jump) rule.

Let us prove the fact (ii) : if Γi is valid and saturated and
it is not an axiom, then there exist a valid sequent ∆ such
that Γi is obtained by (Jump) from ∆.

Suppose that Γi is valid and it is not an axiom. We let

Γi = ΓN ,Λ, [Σ1 /Π1], . . . , [Σn /Πn]

as in the definition of saturated sequent. Observe that Λ
does not contain axioms. By saturation (and weakening and
contraction) we can assume that the blocks in the sequence
as ordered as follows :

— Σ1 ⊇ Σ2 ⊇ . . .Σn

— Π1 ⊆ Π2 ⊆ . . . ⊆ Πn

A quick argument : by saturation blocks are ordered with
respect to set-inclusion for both components Σ and Π, consi-
der them ordered first by decreasing Σ : let two blocks in
the sequence : [Σ/Π], [Σ′/Π′] with Σ′ ⊆ Σ we can assume
that Π ⊆ Π′ otherwise it would be Π′ ⊆ Π, but then any
sequent containing both [Σ / Π], [Σ′ / Π′] is semantically
equivalent to a sequent containing only [Σ / Π] (syntacti-
cally we get rid of [Σ′ /Π′] by weakening and contraction) 3.
Thus we let :

Π1 = B1,1, . . . , B1,k1

Π2 = B1,1, . . . , B1,k1 , B2,1, . . . , B2,k2

. . .
Πn = B1,1, . . . , B1,k1

, . . . , B2,k2
, . . . , Bn,kn

Suppose now by absurdity that no application of (Jump)
leads to a valid sequent. Thus for each l = 1, . . . , n, and
t = 1, . . . , kl, the sequent

¬Bl,t,Σl

is not valid. Starting from l = 1 up tp n, there are increasing
sequences of models :

M1,1, . . . ,M1,k1
,

M1,1, . . . ,M1,k1
,M2,1, . . . ,M2,k2

M1,1, . . . ,M1,k1
, . . . ,M2,k2

, . . . ,Mn,kn

where Ml,t = (Wl,t, $
l,t, [ ]l,t) for l = 1, . . . , n, and

t = 1, . . . , kl and some elements xl,t ∈Wl,t such that

Ml,t, xl,t |= Bl,t

and
Ml,t, xl,t 6|= C for all C ∈ Σl

3. An alternative argument : Γi must contain a valid subsequent Γ′i
where the blocks satisfy the above ordering conditions. Then the proof
carry on considering Γ′i.



Observe that ifMl,t, xl,t 6|= C for all C ∈ Σs and s < t
thenMl,t, xl,t 6|= C for all C ∈ Σt, as Σt ⊆ Σs.

We suppose that all models are disjoints and we define a
new modelM=〈W, $, [ ]〉 as follows :

W = (
⋃

l

⋃
t(Wl,t)) ∪ {x} for a new element x

$z = $l,tz if z ∈ Wl,t for some l, t
[P ] =

⋃
l

⋃
t[P ]l,t if ¬P 6∈ Λ

[P ] =
⋃

l

⋃
t[P ]l,t ∪ {x} if ¬P ∈ Λ

In order to define I(x) we let :

α1 = {x1,1, . . . , x1,k1
}

α2 = {x1,1, . . . , x1,k1
, x2,1, . . . , x2,k2

}
. . .
αn = {x1, . . . , x1,k1 , x2,1, . . . , x2,k2 , . . . , xn,kn}

We finally let
$x = {α1, . . . , αn}

Observe that the “spheres” αl are nested.
To complete the proof we must show that x falsifies Γi

in M . In particular we have to show that :

1. M, x 6|= L for every L ∈ Λ

2. M, x 6|= [Σl /Πl] for l = 1, . . . , n

3. M, x 6|= ¬(A � B) for every ¬(A � B) ∈ ΓN

Fact (1) is obvious by definition : if P ∈ Λ, then ¬P 6∈ Λ
(otherwise Γi would be an axiom) and x 6∈ [P ], if ¬P ∈ Λ,
then x ∈ [P ].

To prove Fact (2), first observe that for z ∈ Wl,t and
every formula F , we have

z ∈ [F ] ⇐⇒ z ∈ [F ]l,t

This is proved by a straightforward induction on F . Then
we prove by induction on l Fact (2). For l = 1, we have that
for x1,l ∈ α1

M, x1,l |= B1,l

whence :

α1 6|=∀ ¬B1,t for t = 1, . . . , k1.

On the other hand putting Σ1 = C1,1, . . . , C1,r1 , we have,
for every u = 1, . . . , r1 and x1,t, t = 1, . . . , k1

M, x1,t 6|= C1,u

but this means that

α1 6|=∃ C1,u for u = 1, . . . , r1.

Thus we get
M, x 6|= [Σ1 /Π1]

For l > 1, since Σl ⊇ Σl−1 and Πl−1 ⊆ Πl, the argument
is the same (using possibly the induction hypothesis).

We consider now (Fact 3) : let ¬(A � B) ∈ ΓN and
let αl ∈ $x. Let us consider [Σl / Πl], by saturation either
A ∈ Πl or B ∈ Σl. For what we have just shown, in the
former case we have αl |=∃ A and in the latter case we have
αl |=∀ ¬B. Thus :

for any αl ∈ $x either αl |=∃ A or αl |=∀ ¬B.

whenceM, x |= A � B.

�

5 Conclusions

In this paper we begin a proof-theoretical investigation of
Lewis’ logics of counterfactuals characterized by the sphere-
model semantics. We have presented a simple, analytic cal-
culus IV for logic V, the most general logic characterized by
the sphere-model semantics. The calculus is standard, that
is to say it contains a finite a number of rules with a fixed
number of premisses and internal in the sense that each
sequent denotes a formula of V. The novel ingrediant of
IV is that sequents are structured objects containing blocks,
where a block is a structure or a sort of n-ary modality en-
coding a finite combination of formulas with the connective
�. The calculus IV ensures termination, and therefore it
provides a decision procedure for V.

In future research, we aim at extending our approach
to all the other conditional logics of the Lewis’ family, in
particular we aim at focusing on the logics VT, VW and VC.
Moreover, we shall study the complexity of the calculus IV

with the hope of obtaining optimal calculi.
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